[6] EMA, “Guideline on Quality, non-clinical and clinical aspects of live recombinant

viral vectored vaccines,” Reproduction, vol. 44, no. November, pp. 1–14, 2009.

[7] R. Morenweiser, “Downstream processing of viral vectors and vaccines,” Gene

Ther., vol. 12, pp. S103–S110, 2005.

[8] H. Ugai et al., “Purification of infectious adenovirus in two hours by ultra-

centrifugation and tangential flow filtration,” Biochem. Biophys. Res. Commun., vol.

331, no. 4, pp. 1053–1060, 2005.

[9] S. Zolotukhin et al., “Recombinant adeno-associated virus purification using novel

methods improves infectious titer and yield,” Gene Ther., vol. 6, no. 6, pp. 973–985,

1999.

[10] C. B. Reimer, R. S. Baker, T. E. Newlin, and M. L. Havens, “Influenza virus

purification with the zonal ultracentrifuge,” Science, vol. 152, no. 3727, pp. 1379

LP–1381, Jun. 1966.

[11] J. Hilfenhaus, R. Köhler, and F. Behrens, “Large-scale purification of animal viruses

in the RK-model zonal ultracentrifuge: II. Influenza, mumps and Newcastle disease

viruses,” J. Biol. Stand., vol. 4, no. 4, pp. 273–283, 1976.

[12] M. M. Segura, M. Mangion, B. Gaillet, and A. Garnier, “New developments

in lentiviral vector design, production and purification,” Expert Opin. Biol. Ther.,

vol. 13, no. 7, pp. 987–1011, Aug. 2013.

[13] G. Iyer et al., “Reduced surface area chromatography for flow-through purification of

viruses and virus like particles,” J. Chromatogr. A, vol. 1218, no. 26, pp. 3973–3981,

2011.

[14] R. M. Anderson, P. J. Scannon, and J. T. Matthews, “Planning for pandemics of

infectious diseases 30 Years of commercial experience,” 2006.

[15] A. C. Silva et al., “Adenovirus vector production and purification,” Curr. Gene

Ther., vol. 10, no. 6, pp. 437–455, Dec. 2010.

[16] C. Peixoto, M. F. Q. Sousa, A. C. Silva, M. J. T. Carrondo, and P. M. Alves,

“Downstream processing of triple layered rotavirus like particles,” J. Biotechnol.,

vol. 127, no. 3, pp. 452–461, 2007.

[17] O.-W. Merten, M. Schweizer, P. Chahal, and A. Kamen, “Manufacturing of viral

vectors: part II. Downstream processing and safety aspects,” Pharm. Bioprocess.,

vol. 2, no. 3, pp. 237–251, 2014.

[18] A. Kamen and O. Henry, “Development and optimization of an adenovirus pro-

duction process,” J. Gene Med., vol. 6, no. SUPPL. 1, pp. 184–192, 2004.

[19] N. E. Altaras, J. G. Aunins, R. K. Evans, A. Kamen, J. O. Konz, and J. J. Wolf,

“Production and formulation of adenovirus vectors,” Adv. Biochem. Eng. Biotechnol.,

vol. 99, no. November, pp. 193–260, 2005.

[20] E. J. D’Hondt and H. B. Engelmann, “Process for producting influeza vaccine,”

2010.

[21] F. Colavita et al., “Evaluation of the inactivation effect of Triton X-100 on Ebola

virus infectivity,” J. Clin. Virol., vol. 86, pp. 27–30, 2017.

[22] M. G. Moleirinho et al., “Clinical-grade oncolytic adenovirus purification using

polysorbate 20 as an alternative for cell lysis,” Curr. Gene Ther., vol. 18, no. 6,

pp. 366–374, 2018.

[23] P. Guo, Y. ElGohary, K. Prasadan, C. Shiota, X. Xiao, J. Wiersch, J. Paredes, S.

Tulachan, G. K. Gittes, “Rapid and simplified purification of recombinant adeno-

associated virus,” J. Virol. Methods vol. 183, no. 2, pp. 139–146, 2013. doi: 10.1016/

j.jviromet.2012.04.004

[24] S. Zhang, C. Thwin, Z. Wu, T. Cho, and S. Gallagher, “Method for the production

and purification of adenoviral vectors,” 2010.

[25] L. Besnard et al., “Clarification of vaccines: An overview of filter based technology

trends and best practices,” Biotechnol. Adv., vol. 34, no. 1, pp. 1–13, 2016.

196

Bioprocessing of Viral Vaccines